Cumulative Anomeric Effect: A Theoretical and X-ray Diffraction Study of Orthocarbonates

 Jayaraman Chandrasekhar ${ }^{*, \ddagger}$
Contribution from the Department of Inorganic and Physical Chemistry and the Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India. Received June 21, 1989

Abstract

The combined effect of six anomeric pair interactions at a single carbon atom has been examined by X-ray diffraction and molecular mechanics. mm2 calculations on $\mathrm{C}(\mathrm{OR})_{4}(\mathrm{R}=\mathrm{H}, \mathrm{Me}, \mathrm{Ph})$ indicate two closely spaced minima with S_{4} and $D_{2 d}$ symmetry. An interesting low-energy pathway resembling a three-dimensional domino has been computed for the interconversion of the S_{4} conformer to the $D_{2 d}$ form. Single-crystal X-ray structures determined for three $\mathrm{C}(\mathrm{OAr})_{4}$ derivatives confirm that the energies of the two conformers do not differ significantly. Thus, the two crystallographically nonequivalent molecules in the unit cell of tetraphenoxymethane (4) as well as of tetrakis(3,5-dimethylphenoxy)methane (5) adopt conformations in which the central $\mathrm{C}(\mathrm{OC})_{4}$ units have a near $D_{2 d}$ symmetry, while the corresponding fragment has a distorted S_{4} symmetry in tetrakis(4-bromophenoxy)methane (6). The experimental $\mathrm{C}-\mathrm{O}$ bond lengths and $\mathrm{C}-\mathrm{O}-\mathrm{C}$ and $\mathrm{O}-\mathrm{C}-\mathrm{O}$ angles are consistent with large a nomeric interactions.

The importance of the anomeric effect in determining the structure, conformational energies, and reactivity in organic compounds is now widely appreciated. ${ }^{1-7}$ While this stereoelectronic effect is quite a general phenomenon, ${ }^{1,5-7}$ the anomeric effect at a saturated carbon attached to two oxygen atoms is particularly well documented. ${ }^{1-4}$ Numerous crystal structures, especially those of carbohydrates ${ }^{3 \mathrm{ecj}, \mathrm{k}}$ as well as empirical ${ }^{4 \mathrm{a}}$ and quantum chemical calculations ${ }^{1,4 b . c, 8}$ substantiate a well-defined conformational preference for $\mathrm{R}-\mathrm{O}-\mathrm{C}-\mathrm{O}-\mathrm{R}^{\prime}$ fragments. For example, in a simple model system, dimethoxymethane, the preferred conformation is the synclinal ($+s c,+s c$ or $-s c,-s c$) geometry (1a), whereas the antiperiplanar ($a p, a p$) conformer (1b),

also expected to be stable on purely torsional considerations, is higher in energy by $7.6 \mathrm{kcal} / \mathrm{mol} .^{8}$ The $\mathrm{C}-\mathrm{O}$ bond lengths as well as $\mathrm{O}-\mathrm{C}-\mathrm{O}$ bond angles also show a strong conformational dependence. $1,4 \mathrm{a} .8$ The importance of lone-pair alignments in determining the reactivity of anomeric systems is borne out by the "antiperiplanar effect" in acetal and ortho ester hydrolysis. ${ }^{1,2}$

It is of considerable interest to study how these effects act in concert when more than two oxygen atoms are present at a single carbon. While bond length reductions due to multiple substitution by electronegative groups have been considered in detail, ${ }^{6,9}$ systematic investigations on conformational preferences have not been carried out. Of particular interest are orthocarbonates, $\mathrm{C}(\mathrm{OR})_{4}$, which contain the maximum possible number (six) of anomeric $\mathrm{O}-\mathrm{C}-\mathrm{O}$ pairs at a single carbon center. ${ }^{10}$ These compounds may be expected to have conformational and structural features

[^0]characteristic of multiple electronic interactions. In conformationally free orthocarbonates four $\mathrm{R}-\mathrm{O}-\mathrm{C}-\mathrm{O}$ dihedral angles need to be specified to uniquely determine the conformation. Since there are three staggered orientations available for each $\mathrm{O}-\mathrm{R}$ group, there are 81 torsionally ideal conformations, of which some are equivalent. However, unfavorable nonbonded contacts, dipole interactions, and anomeric interactions reduce the number of preferred conformations. In particular, if the consequence of anomeric interactions is extrapolated from relative energies of dimethoxymethane, only two distinct low-energy conformations need special consideration. ${ }^{11}$ In one case, one $\mathrm{R}-\mathrm{O}-\mathrm{C}-\mathrm{O}-\mathrm{R}$ unit

[^1]has the $(+s c,+s c)$ conformation while the other has the ($-s c,-s c$) orientation. This leads to the S_{4} form (2a). Alternatively, two sets of $\mathrm{R}-\mathrm{O}-\mathrm{C}-\mathrm{O}-\mathrm{R}$ units adopt the ($+s c,+s c$) alignments. If the $\mathrm{R}-\mathrm{O}-\mathrm{C}-\mathrm{O}$ dihedral angles are exactly 60°, the resulting conformation is a $D_{2 d}$ form (2b) or else it has D_{2} symmetry (2c).

$\underline{2 c}, \mathrm{O}_{2}$
Additional 1,5-nonbonded repulsions in the D_{2} form may force the molecule to adopt perfect $D_{2 d}$ symmetry. Overall, the S_{4} form contains two ($+s c,+s c$) anomeric pairs and four ($+s c, a p$) units. On the other hand, the $D_{2 d}$ conformer has four ($+s c,+s c$) fragments and two ($a p, a p$) units. By use of available ab initio relative energies of methanediol for these orientations and assuming additivity of anomeric interactions, $D_{2 d}$ was predicted to be 6 $\mathrm{kcal} / \mathrm{mol}$ less stable than the S_{4} conformer. ${ }^{112}$

Available structural information on orthocarbonates is fragmentary. The only X-ray structure determination is that of the conformationally rigid spiroorthocarbonate (3). ${ }^{12}$ Dielectric constant measurements seemed to indicate that $\mathrm{C}(\mathrm{OPh})_{4}$ adopts an S_{4} conformation in solution. ${ }^{13}$ Electron diffraction studies on tetramethoxymethane in the gas phase also indicated predominance of the S_{4} conformer. ${ }^{112}$ No appreciable amount of the alternative $D_{2 d}$ conformer was detected. However, variable-temperature Raman spectral data were interpreted in terms of a 90:10 mixture of S_{4} and $D_{2 d}$ conformers, corresponding to an enthalpy difference of only $1 \mathrm{kcal} / \mathrm{mol} .{ }^{116}$ An earlier interpretation of the spectra indicated the molecule to have a distorted S_{4} symmetry. A recent ab initio study on $\mathrm{C}(\mathrm{OH})_{4}$ also places the $D_{2 d}$ conformation only $2.4 \mathrm{kcal} / \mathrm{mol}$ above the S_{4} conformation. ${ }^{5}$

In this paper we have combined theoretical and experimental investigations on the conformations of orthocarbonates. Detailed molecular mechanics calculations ${ }^{14}$ have been carried out on model systems. The various minima and the barriers separating them have been characterised. The question of additivity of anomeric interactions has been probed by comparing calculated conformational energies with those extrapolated from the Mm^{15} relative energies of dimethoxymethane. Crystal structures of three tetrakis(aryloxy)methanes (4-6) have also been determined. These represent the first X-ray structural determination of conformationally flexible orthocarbonates.

[^2]

Figure 1. Least motion pathways for the interconversion of $D_{2 d}$ and S_{4} conformers of orthocarbonates: (a) concerted rotation; (b) sequential rotation.

Figure 2. The three-dimensional domino pathway for the interconversion of $D_{2 d}$ and S_{4} conformers of orthocarbonates.

Computational Results

Calculated Minima. For the three orthocarbonates studied, $\mathrm{C}(\mathrm{OR})_{4}(\mathrm{R}=\mathrm{H}, \mathrm{Me}$, and Ph$)$, Mm2 calculations ${ }^{15}$ predict two minima with S_{4} and $D_{2 d}$ symmetry, in agreement with the earlier analysis. Geometry optimization from several initial coordinates consistently led to one of these two minima. In particular, D_{2} geometries collapsed to more symmetric $D_{2 d}$ structures. While the S_{4} conformer is more stable in each case, the $D_{2 d}$ form is found to be only slightly higher in energy. The calculated energy difference for $\mathrm{C}(\mathrm{OH})_{4}(1.4 \mathrm{kcal} / \mathrm{mol})$ compares favorably with the corresponding value computed at the $6-31 \mathrm{G}^{*}$ level $(2.4 \mathrm{kcal} / \mathrm{mol})$. ${ }^{5}$ In contrast, the value for $\mathrm{C}(\mathrm{OMe})_{4}(1.2 \mathrm{kcal} / \mathrm{mol})$ is much smaller than that estimated eariler ($6 \mathrm{kcal} / \mathrm{mol}$). ${ }^{11 \mathrm{a}}$ The latter value was obtained from ab initio relative energies of methanediol assuming additivity of anomeric pair interactions. The discrepancy is significantly reduced if higher level ($6-31 G^{*}$) data are used. ${ }^{8}$ The S_{4} conformer of $\mathrm{C}(\mathrm{OMe})_{4}$ would then be predicted to be more stable than the $D_{2 d}$ form by only $2.7 \mathrm{kcal} / \mathrm{mol}$. The calculated relative energy ($2.7 \mathrm{kcal} / \mathrm{mol}$) for the phenyl derivative would again suggest that both S_{4} and $D_{2 d}$ conformers of tetrakis(aryloxy)methanes should be experimentally accessible.

Interconversion of $\boldsymbol{D}_{2 d}$ and \boldsymbol{S}_{4} Conformers. The process of converting $D_{2 d}$ to an S_{4} conformation can be viewed as involving the rotation of two OR groups from an initial $(+s c,+s c)$ orientation to a ($-s c,-s c$) orientation. The least motion pathway (Figure 1a) must go through a high-energy C_{2} conformer calculated to be 17.8 $\mathrm{kcal} / \mathrm{mol}$ above the $D_{2 d}$ conformer for $\mathrm{C}(\mathrm{OMe})_{4}$. A concerted rotation of two dihedral angles will also be unfavorable entropically. A stepwise rotation is more likely (Figure lb). mm2 calculations using a pair of sequential dihedral drives involving two OMe groups for tetramethoxymethane indicate a barrier of at least $8.5 \mathrm{kcal} / \mathrm{mol}$ for this pathway, which goes by a conformation in which one $\mathrm{R}-\mathrm{O}-\mathrm{C}-\mathrm{O}-\mathrm{R}$ unit has a ($+\mathrm{sc},-\mathrm{sc}$) orientation (local C_{s} symmetry) while the other $\mathrm{R}-\mathrm{O}-\mathrm{C}-\mathrm{O}-\mathrm{R}$ unit has a favorable ($+s c,+s c$) orientation (local C_{2} symmetry).

An alternative non-least-motion pathway for the $D_{2 d}$ to S_{4} interconversion, involving the realignment of all four OR groups sequentially is conceivable (Figure 2). This is best visualized with

Figure 3. The calculated (Mm2) potential energy profile for the threedimensional domino pathway for the interconversion of $D_{2 d}$ and S_{4} conformers of tetramethoxymethane.
models. Starting from the $D_{2 d}$ conformer, rotation of any one of the OR groups, say $\mathrm{O}_{1} \mathrm{R}_{1}$, in a clockwise direction (looking down the $\mathrm{O}-\mathrm{C}$ bond) would bring the R_{1} group in close proximity to the adjacent group R_{2} (2d). This will result in an anticlockwise rotation of $\mathrm{O}_{2} \mathrm{R}_{2}$ bringing R_{2} close to $\mathrm{R}_{3}(2 \mathrm{e})$. This sets $\mathrm{O}_{3} \mathrm{R}_{3}$ in a clockwise motion until at a certain point it sets $\mathrm{O}_{4} \mathrm{R}_{4}$ in a counterclockwise motion (2f). Thus, when all four OR groups have moved by a small amount, one obtains the S_{4} conformer (2a). MM2 calculations on tetramethoxymethane confirm that the above process is indeed the preferred pathway for the $D_{2 d}$ to S_{4} interconversion. The potential energy diagram computed for such a pathway is shown in Figure 3. Each segment shows the total energy as a function of a different dihedral angle. As the dihedral angle $\mathrm{R}_{1} \mathrm{O}_{1} \mathrm{CO}_{2}$ is changed from its initial 60° value corresponding to the $D_{2 d}$ form, the energy reaches a maximum at the local eclipsed conformation (Figure 3). This structure is $5.4 \mathrm{kcal} / \mathrm{mol}$ above the $D_{2 d}$ form and is the highest energy conformer in the entire pathway. The energy drops as the $O_{1} R_{1}$ group again attains the staggered conformation. At this point the $\mathrm{O}_{2} \mathrm{R}_{2}$ group turns significantly a way to minimize repulsions with the $\mathrm{O}_{1} \mathrm{R}_{1}$ group. The dihedral angle $\mathrm{R}_{2} \mathrm{O}_{2} \mathrm{CO}_{3}$, which is -20°, increases to 0°, for which a small price of $0.7 \mathrm{kcal} / \mathrm{mol}$ is paid. The change in this dihedral angle from 0° to 60° is a downhill process. However, when it is near $60^{\circ}, R_{2}$ bumps into R_{3} and starts a decrease in the $\mathrm{R}_{3} \mathrm{O}_{3} \mathrm{CO}_{4}$ dihedral angle. The change in this dihedral from $+20^{\circ}$ to -60° costs even less, a mere $0.2 \mathrm{kcal} / \mathrm{mol}$! The subsequent change in $\mathrm{R}_{4} \mathrm{O}_{4} \mathrm{CO}$ to reach the S_{4} conformer requires no additional activation. This whole process may be visualized as a three-dimensional domino: after an initial "thrust" of one of the OMe groups in the required direction, additional rotations are generated sequentially by steric interactions. The potential energy profile is a smooth cascade after the first rotation; the energy required for the first dihedral drive corresponds to the overall activation energy for the entire process. Thus, only $5.4 \mathrm{kcal} / \mathrm{mol}$ is required for this $D_{2 \sigma} S_{4}$ interconversion pathway compared to 8.5 and $17.8 \mathrm{kcal} / \mathrm{mol}$ computed for the alternatives considered above.

Attempts to freeze the conformational dynamics were made by studying the temperature dependence of the ${ }^{1} \mathrm{H}$ NMR spectrum of tetrakis(3,5 -dimethylphenoxy)methane. No significant spectral changes were observed down to 210 K . This result is consistent with the calculated barrier ($5.4 \mathrm{kcal} / \mathrm{mol}$) for the $S_{4}-D_{2 d}$ conformational interconversion. However, it should be possible to observe such a process at lower temperatures ${ }^{16}$ or with the use

Figure 4. A typical cross section of the conformational potential energy surface of tetramethoxymethane calculated by the MM2 method (\bullet) and by extrapolating from the energies of dimethoxymethane assuming additivity of pairwise anomeric interactions (O).
of different substituents. Alternative techniques, especially ultrasonic relaxation studies, ${ }^{17}$ might enable the detection of conformational processes involving such relatively small barriers.

The three-dimensional domino process in $\mathrm{C}(\mathrm{OR})_{4}$ molecules represents another intriguing example of correlated conformational dynamics. Iwamura and Mislow have ingeniously constructed several molecules in which torsional motions of two or more internal rotors are coupled. ${ }^{18}$ However, unlike these latter systems, the correlated conformational process in orthocarbonates do not involve gearing of the rotors.

Additivity of Anomeric Interactions. Can the conformational energies of orthocarbonates be predicted from six pairwise additive anomeric interactions? This question was probed in detail by using MM2 data on the conformational surfaces of $\mathrm{C}(\mathrm{OMe})_{4}$ and $\mathrm{CH}_{2}(\mathrm{OMe})_{2}$.

An empirical potential function, given by (1) and (2), describing the anomeric and steric interactions of an $\mathrm{R}-\mathrm{O}-\mathrm{C}-\mathrm{O}-\mathrm{R}$ fragment

$$
\begin{align*}
& V(\phi)= \\
& 1 / 2 V_{1}(1+\cos \phi)+1 / 2 V_{2}(1-\cos 2 \phi)+1 / 2 V_{3}(1+\cos 3 \phi) \tag{1}\\
& \quad V\left(\phi, \phi^{\prime}\right)=V_{0}+V(\phi)+V\left(\phi^{\prime}\right)+A \exp \left(-B r_{15}^{2}\right) \tag{2}
\end{align*}
$$

was first obtained, which reproduces the mm2 surface of $\mathrm{CH}_{2}-$ (OMe$)_{2}$. The form of the function is similar to that employed by Jorgensen and Ibrahim for representing the conformational energies of diethyl ether. ${ }^{19}$ A nonlinear least-squares procedure was used to obtain a fit against 169 representative points on the conformational surface ($V_{0}=2.93 ; V_{1}=-0.77 ; V_{2}=-2.05 ; V_{3}$ $=1.93 ; A=37.60 ; B=0.24 ; \mathrm{SD}=0.1 ; B$ in \AA^{-5}, all other values in $\mathrm{kcal} / \mathrm{mol}$). As in the earlier work, ${ }^{19}$ the methyl-methyl distances $\left(r_{15}\right)$ were determined from rigid rotation of the equilibrium geometry and differ somewhat from the values in the MM2 calculations. The conformational energies for $\mathrm{C}(\mathrm{OMe})_{4}$ were then computed by assuming additivity of the six $\mathrm{R}-\mathrm{O}-\mathrm{C}-\mathrm{O}-\mathrm{R}$ interactions and using eq 2 for each pair. A typical cross section of the surface computed by the MM2 method and the additivity model is shown in Figure 4. The general trends in the mm2 energies are correctly reproduced by the simple model, although the latter values are consistently smaller. While the additivity approximation is reasonable, the true conformational surface is flatter. ${ }^{20}$
(16) Processes involving a barrier of $6 \mathrm{kcal} / \mathrm{mol}$ begin to produce line broadening in ${ }^{1} \mathrm{H}$ NMR spectra (270 MHz) roughly below 150 K . For a typical example, see: Ernst, C. A.; Allred, A. L.; Ratner, M. A. J. Organomet. Chem. 1979, 178, 119.
(17) Walker, S. M. In Internal Rotation in Molecules; Orville-Thomas, W. J., Ed.; John Wiley: New York, 1974 and other chapters in this book. (18) Iwamura, H.; Mislow, K. Acc. Chem. Res. 1988, 21, 175.
(19) Jorgensen, W. L.; Ibrahim, M. J. Am. Chem. Soc. 1981, 103, 3976.
(20) If anomeric interaction is present only when a p-type lone pair on oxygen is roughly parallel to an adjacent $\mathrm{C}-\mathrm{O} \sigma^{*}$ orbital, the additivity approximation is justified. However, stabilizing interactions are possible in orthocarbonates even when a lone pair is perpendicular to an adjacent C -O bond; in this orientation the lone pair can interact with the antisymmetric combination of the remaining two $\mathrm{C}-\mathrm{O} \sigma^{*}$ orbitals. Therefore the conformational surface is flatter than anticipated on simple additivity grounds.

Table I. Key Torsion Angles (in Degrees) of 4-6

	4		5		6
	a	b	a	b	
$\mathrm{C}(11)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	-66.5 (2)	-64.0 (2)	-51.0 (5)	51.1 (5)	64 (4)
$\mathrm{C}(21)-\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	-51.6 (3)	-44.4 (3)	-60.4 (5)	51.1 (5)	87 (4)
$\mathrm{C}(31)-\mathrm{O}(3)-\mathrm{C}(1)-\mathrm{O}(4)$	-66.5 (2)	-64.0 (3)	-47.6 (5)	47.9 (5)	-52 (4)
$\mathrm{C}(41)-\mathrm{O}(3)-\mathrm{C}(1)-\mathrm{O}(3)$	-51.6 (3)	-44.4 (3)	-51.6 (5)	66.0 (5)	-95 (3)
$\mathrm{C}(11)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(3)$	171.5 (2)	173.6 (2)	-173.0 (5)	173.6 (5)	-50 (4)
$\mathrm{C}(21)-\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{O}(4)$	-174.7 (2)	-166.9 (2)	-177.6(5)	-169.1 (5)	-45 (4)
$\mathrm{C}(31)-\mathrm{O}(3)-\mathrm{C}(1)-\mathrm{O}(1)$	171.5 (2)	173.6 (2)	172.3 (5)	172.1 (5)	-170 (3)
$\mathrm{C}(41)-\mathrm{O}(4)-\mathrm{C}(1)-\mathrm{O}(2)$	171.5 (2)	-166.9 (2)	-177.0(5)	-170.1 (5)	142 (3)

Table II. Key Bond Angles (in Degrees) of 4-6

	$\mathrm{O}-\mathrm{C}-\mathrm{O}(s c, s c)$				$\mathrm{O}-\mathrm{C}-\mathrm{O}(a p, a p)$		av
	1	2	3	4	5	6	
4a	113.5 (2)	114.0 (2)	113.5 (2) ${ }^{\text {a }}$	114.0 (2) ${ }^{\text {a }}$	102.0 (2)	100.4 (2)	109.6 (1)
4b	113.7 (2)	113.6 (2)	113.7 (2) ${ }^{\text {a }}$	[16.2 (2) ${ }^{\text {a }}$	101.0 (2)	101.4 (2)	109.6 (1)
5a	113.6 (4)	113.0 (4)	114.9 (4)	114.5 (5)	102.2 (4)	99.3 (4)	109.6 (2)
5b	110.8 (5)	116.4 (5)	115.2 (6)	116.3 (5)	100.9 (5)	102.7 (5)	110.4 (2)
6	116 (3)	110 (3)	111(3)	114 (3)	111 (3)	93 (3)	109 (1)

${ }^{a}$ Values are related by 2 -fold axis.

Experimental Results

Single-crystal X-ray structures of three orthocarbonates, tetraphenoxymethane (4), tetrakis(3,5-dimethylphenoxy)methane (5), and tetrakis(4-bromophenoxy)methane (6), were solved by direct methods. ${ }^{21}$ The refinements could be carried out to desirable precision for 4 and 5 (R index of 0.042 and 0.063 , respectively). However, due to rapid deterioration of crystals during data collection for the bromo derivative, 6 , the corresponding R index was much higher (0.118).

Structures 4 and 5 have two independent molecules in the asymmetric part of the unit cell. These are denoted by $\mathbf{4 a}, \mathbf{4 b}$ and $\mathbf{5 a}, \mathbf{5 b}$, respectively. It is interesting that all four molecules, $\mathbf{4 a}-\mathbf{5 b}$, have a near- $D_{2 d}$ symmetry about the central $\mathrm{C}(\mathrm{OC})_{4}$ unit ${ }^{22}$ (Figures 5 and 6). Two sets of $\mathrm{C}-\mathrm{O}-\mathrm{C}-\mathrm{O}$ units have torsion angles corresponding approximately to the ($+s c,+s c$) conformation, while two others resemble the ($a p, a p$) alignment. Thus, the $\mathrm{C}-\mathrm{O}-\mathrm{C}-\mathrm{O}$ dihedral angles involving $\mathrm{C}(11)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)-$ $\mathrm{C}(21)$ and $\mathrm{C}(31)-\mathrm{O}(3)-\mathrm{C}(1)-\mathrm{O}(4)-\mathrm{C}(41)$ units are close to 60°, whereas the corresponding angles involving $\mathrm{C}(11)-\mathrm{O}(1)-\mathrm{C}(1)-$ $\mathrm{O}(3)-\mathrm{C}(31)$ and $\mathrm{C}(21)-\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{O}(4)-\mathrm{C}(41)$ fragments are approximately 180° (Table I). In contrast, the structure of 6 corresponds to a distorted S_{4} symmetry about its central C(OC) ${ }_{4}$ unit on the basis of its $\mathrm{C}-\mathrm{O}-\mathrm{C}-\mathrm{O}$ dihedral angles (Table I). However, the deviations from ideal torsional angles are considerably higher in 6 than in the case of the $D_{2 d}$ forms $\mathbf{4 a - 5 b}$. In 6, the torsion angles for the $\mathrm{C}(11)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)-\mathrm{C}(21)$ unit correspond to a ($+s c,+s c$) arrangement, while those of the C (31) $-\mathrm{O}(3)-\mathrm{C}(1)-\mathrm{O}(4)-\mathrm{C}(41)$ fragment correspond to a ($-s c,-s c$) alignment. These dihedral angles are rather similar to those observed in tetrakis(thiophenoxy)methane ${ }^{23}$ and tetrakis(thiomethoxy)methane. ${ }^{24}$ These results confirm that the energy difference between S_{4} and $D_{2 d}$ conformers in orthocarbonates is indeed small and of the order of crystal-packing energies. Thus, both forms are experimentally accessible in the solid state. The flatness of the potential energy surface is further borne out by

[^3]

Figure 5. ORTEP drawing of the crystallographically determined structure of 4 b .

Figure 6. ORTEP drawing of the crystallographically determined structure of $\mathbf{5 b}$.

Table III. Key Bond Lengths (in Angstroms) of 4-6

	inner $\mathrm{C}-\mathrm{O}$				outer $\mathrm{C}-\mathrm{O}$				average	
	1	2	3	4	5	6	7	8	$\mathrm{I}(\mathrm{C}-\mathrm{O})$	$\mathrm{O}(\mathrm{C}-\mathrm{O})$
4 a	1.391 (3)	1.396 (3)	1.391 (3) ${ }^{\text {a }}$	1.396 (3) ${ }^{\text {a }}$	1.412 (2)	1.415 (3)	1.412 (2) ${ }^{\text {a }}$	1.415 (2) ${ }^{\text {a }}$	1.395 (2)	1.414 (1)
4b	1.389 (3)	1.391 (3)	1.389 (3) ${ }^{\text {a }}$	1.391 (3) ${ }^{\text {a }}$	1.407 (3)	1.407 (3)	1.407 (3) ${ }^{\text {a }}$	1.407 (3) ${ }^{\text {a }}$	1.390 (2)	1.407 (2)
5a	1.364 (6)	1.394 (8)	1.417 (6)	1.392 (8)	1.420 (8)	1.374 (8)	1.412 (8)	1.453 (8)	1.392 (4)	1.415 (4)
5b	1.424 (8)	1.407 (9)	1.378 (8)	1.395 (8)	1.427 (8)	1.430 (8)	1.416 (8)	1.358 (8)	1.401 (4)	1.408 (4)
6	1.33 (5)	1.33 (4)	1.39 (4)	1.29 (5)	1.49 (5)	1.35 (4)	1.68 (6)	1.70 (6)	1.35 (2)	1.56 (2)

${ }^{a}$ Values are related by 2 -fold axis.

Table IV. Details of Data Collection and Refinement

	4	5	6
crystal size, mm	$\begin{aligned} & 0.2 \times 0.15 \times \\ & 0.15 \end{aligned}$	$\begin{aligned} & 0.22 \times 0.13 \times \\ & 0.1 \end{aligned}$	$\begin{gathered} 0.3 \times 0.2 \times \\ 0.1 \end{gathered}$
range of measd reflens	$\begin{aligned} & 0 \leq h \leq 14, \\ & -21 \leq k \leq 21, \\ & -16 \leq 1 \leq 16 \end{aligned}$	$\begin{gathered} 0 \leq h \leq 9, \\ 0 \leq k \leq 18, \\ 0 \leq l \leq 43 \end{gathered}$	$\begin{aligned} & 0 \leq h \leq 11, \\ & -12 \leq k \leq 12, \\ & -13 \leq 1 \leq 13 \end{aligned}$
scan type	$\omega-2 \theta$	ω	$\omega-2 \theta$
2θ range, deg	2.0-50.0	2.0-46.0	2.0-46.0
no. of measd reflens	5200	4500	3600
no. of obsd reflens	2270	2664	1506
obsvn criterion	$I \geq 2.5 \sigma(I)$	$I \geq 2.5 \sigma(I)$	$I \geq 4 \sigma(I)$
$R_{\text {int }}$	0.021	0.027	0.073
weighting	unit	σ	σ
(shift/esd) max	<0.1	<0.1	<0.5
no. of variables	350	666	153
$R(F)$	0.042	0.063	0.118
$R_{w}(F)$		0.065	0.137

the fact that two molecules in the same crystal have two slightly different sets of torsional angles for 4 and 5 .

The central $\mathrm{O}-\mathrm{C}-\mathrm{O}$ bond angles in $\mathbf{4 a - 5 b}$ show an interesting pattern: four of these (average 114°) are significantly greater than the ideal tetrahedral value while the remaining two (average 104°) are smaller (Table II). The larger values involve atoms having the ($s c, s c$) conformation. On the other hand, the smaller angles correspond to the ($a p, a p$) units. Identical trends in bond angles are found in the ($s c, s c$) and ($a p, a p$) conformers of dimethoxymethane also. ${ }^{4 a, 25}$ These angle deformations have been attributed to nonbonded interactions. ${ }^{4 \mathrm{a}, 26}$ The transferability of these effects from dimethoxymethane to tetrakis(aryloxy)methane is indeed remarkable. The geometry about the central carbon in orthocarbonates seems to be determined by a simple sum of six independent anomeric pair interactions.

Further evidence for the presence of cumulative anomeric effect in orthocarbonates is provided by the "inner" $\left(\mathrm{C}_{\text {alky } 1}-O\right)$ and "outer" ($\mathrm{C}_{\mathrm{ary}} \mathrm{l}^{-\mathrm{O}}$) $\mathrm{C}-\mathrm{O}$ bond lengths. In agreement with the earlier electron diffraction study on tetramethoxymethane, ${ }^{112}$ the inner $\mathrm{C}-\mathrm{O}$ bonds are consistently shorter in all the structures determined in this study (Table III). This result is all the more remarkable in the tetrakis(aryloxy)methanes because the outer bonds involve sp^{2} carbon atoms. The average inner and outer $\mathrm{C}-\mathrm{O}$ bond lengths obtained from 212 crystal structures of anisoles surveyed through the Cambridge Crystallography Database are 1.415 (16) and 1.371 (15) \AA, respectively. ${ }^{27}$ The trend is reversed in the tetrakis(aryloxy)methanes. The shortening of the inner bonds is a combination of the electronegativity effect due to multiple oxygen substitution ${ }^{9 c}$ and the anomeric effect. The lengthening of the outer bonds clearly indicates that the π lone pair on each of the oxygen atoms is used for negative hyperconjugation with adjacent $\mathrm{C}-\mathrm{O} \sigma^{*}$ orbitals rather than for conjugation with the phenyl ring. Consistent with these interpretations, the outer $\mathrm{C}-\mathrm{S}$ bonds are significantly shorter than the inner ones in tetrakis(thiophen-

(25) Astrup, E. E. Acta Chem. Scand. 1973, 27, 3271.

(26) Gorenstein, D. G.; Findlay, J. B.; Luxon, B. A.; Kar, D. J. Am. Chem. Soc. 1977, 99, 3473. Gorenstein, D. G.; Kar, D. Ibid. 1977, 99, 672.
(27) Nyburg, S. C.; Faerman, C. H. J. Mol. Struct. 1986, 140, 347.
oxy)methane ${ }^{23}$ and tetrakis(thiomethoxy)methane. ${ }^{24}$ The anomeric effect involving two sulfur atoms has been established to be negligible, ${ }^{4 b}$ and hence, conjugation with the phenyl ring is the dominant electronic effect in this molecule.

Conclusions

While the anomeric effect is generally associated with strong conformational preferences, the cumulative anomeric effect due to four oxygen substituents at a single saturated carbon leads to a relatively flat conformational energy surface. Both S_{4} and $D_{2 d}$ structures for orthocarbonates are computed to be energetically accessible minima with a small energy difference. X-ray diffraction studies on three tetrakis(aryloxy)methanes provide confirmation: tetraphenoxymethane and tetrakis(3,5 -dimethylphenoxy)methane adopt approximately $D_{2 d}$ geometries while a distorted S_{4} structure is found for tetrakis(4-bromophenoxy)methane. The presence of multiple anomeric interactions is evident in the observed bond lengths and angles.

The conformational energies of orthocarbonates may be predicted reasonably well by a sum of six pairwise anomeric interactions. The additivity hypothesis is supported by the experimental $\mathrm{O}-\mathrm{C}-\mathrm{O}$ bond angles, which follow the same conformational dependence as found in simple model systems.

A novel correlated torsional motion, best visualized as a three-dimensional domino, is suggested to be involved in the interconversion of $D_{2 d}$ and S_{4} minima of orthocarbonates.

Experimental Section

Compounds 4-6 were prepared according to literature procedures. ${ }^{28}$ Three-dimensional intensity data were collected on an Enraf Nonius CAD-4 diffractometer with graphite-monochromated Mo $\mathrm{K} \alpha(0.7107 \AA$) radiation. Control reflections monitored at 1-h intervals showed only statistical fluctuations in the intensity for 4 and 5 , while 6 showed a decrease in intensity as the crystal was found to be unstable to X -rays. Four crystals were needed to complete the data collection. Routine intensity data reduction was applied for all three crystals. The data for 6 were averaged to a common scale. The structures were solved by direct methods. ${ }^{21}$ Non-hydrogens were refined anisotropically and hydrogens isotropically in the case of 4. In 5 , hydrogens were included only for structure factor calculation and not refined because of parameter limitations in both shelx76 and SFLS programs. ${ }^{21}$ In 6 , the hydrogens were not included. The refinements converged at R values of $0.042,0.063$, and 0.118 for compounds 4,5 , and 6 , respectively.

Crystal data. 4: $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{O}_{4} ; \mathrm{MW} 384.4 ; \mathrm{mp} 99-100^{\circ} \mathrm{C}$; monoclinic; space group $I 2 / c ; a=14.816(1), b=19.505(1), c=13.308$ (1) $\AA ; \beta$ $=90.36(2)^{\circ} ; V=3851.5 \AA^{3} ; D_{\text {maasd }}=1.32, D_{\text {calce }}=1.330 \mathrm{~g} \mathrm{~cm}^{-3} ; Z=$ 8; $F(000)=1616.5: \mathrm{C}_{33} \mathrm{H}_{36} \mathrm{O}_{4} ;$ MW $496.6 ; \mathrm{mp} 156-157^{\circ} \mathrm{C}$; orthorhombic; space group $\operatorname{Pbn2}_{1} ; a=8.314$ (7), $b=16.929$ (3), $c=39.797$ (4) $\AA ; V=5601.3 \AA^{3} ; D_{\text {maad }}=1.18, D_{\text {calad }}=1.178 \mathrm{~g} \mathrm{~cm}^{-3} ; Z=8 ; F(000)$ $=2128.6: \mathrm{C}_{25} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Br}_{4} ; \mathrm{MW} 700.0 ; \mathrm{mp} 139-140^{\circ} \mathrm{C}$; space group $P \overline{\mathrm{I}}$; $a=10.221$ (1),$b=11.100$ (1), $c=11.944$ (2) $\AA ; \alpha=71.87$ (2), $\beta=$ $103.93(2), \gamma=101.37(2)^{\circ} ; V=1239.9 \AA^{3} ; D_{\text {masd }}=1.87, D_{\text {calda }}=1.874$ $\mathrm{g} \mathrm{cm}^{-3} ; \boldsymbol{Z}=2 ; F(000)=676$. Other details are given in Table IV.

Supplementary Material Available: Twelve tables listing final fractional atomic coordinates, isotropic temperature factors, bond lengths, and bond angles involving non-hydrogen atoms of $\mathbf{4 a}, \mathbf{4 b}$, $\mathbf{5 a}, 5 \mathbf{b}$, and 6 (9 pages). Ordering information is given on any current masthead page.

[^4]
[^0]: ${ }^{4}$ Department of Inorganic and Physical Chemistry.
 © Department of Organic Chemistry.

[^1]: (1) Kirby, A. J. The Anomeric Effect and Related Stereoelectronic Effects at Oxygen; Springer-Verlag: Berlin, 1983.
 (2) (a) Deslongchamps, P. Stereoelectronic Effects in Organic Chemistry; Pergamon: Oxford, 1983. (b) Szarek, W. A., Horton, D., Eds. The Anomeric Effect: Origin and Consequences; ACS Symposium Series 87; American Chemical Society: Washington, DC, 1979.
 (3) For representative recent experimental studies, see: (a) Fuchs, B.; Ellencweig, A.; Tartakovsky, E.; Aped, P. Angew. Chem., Int. Ed. Engl. 1986, 25, 287. (b) Anderson, J. E.; Heki, K.; Hirota, M.; Jorgensen, F. S. J. Chem. Soc., Chem. Commun. 1987, 554. (c) Anet, F. A. L.; Kopelevich, M. Ibid. 1987, 595. (d) Harcourt, M. P.; MoreO'Ferral, R. A. Ibid. 1987, 823. (e) Cosse-Barbi, A; Dubois, J.-E. J. Am. Chem. Soc. 1987, 109, 1503. (f) Desilets, S.; St-Jacques M., Ibid. 1987, 109, 1641. (g) Praly, J.-P.; Lemieux, R. U. Can. J. Chem. 1987, 65, 213. (h) Penner, G. H.; Schaefer, T.; Sebastain, R.; Wolfe, S. Ibid. 1987, 65, 1845. (i) Chiang, C.-Y.; Butler, W.; Kuczkowski, R. J. Chem. Soc., Chem. Commun. 1988, 465. (j) Cosse-Barbi, A.; Watson, D. G.; Dubois, J.-E. Tetrahedron Lett. 1989, 30, 163. (k) Dubois, J.-E.; Cosse-Barbi, A.; Watson, D. G. Ibid. 1989, 30, 167.
 (4) For representative recent theoretical work see: (a) Norskov-Lauritsen, L.; Allinger, N. L. J. Comput. Chem. 1984, 5, 326. (b) Schleyer, P. v. R.; Jemmis, E. D.; Spitznagel, G. W. J. Am. Chem. Soc. 1985, 107, 6393. (c) Aped, P.; Apeloig, Y.; Ellencweig, A.; Fuchs, B.; Goldberg, I.; Karni, M.; Tartakovsky, E. Ibid. 1987, 109, 1486.
 (5) Reed, A. E.; Schade, C.; Schleyer, P. v. R.; Kamath, P. V.; Chandrasekhar, J. J. Chem. Soc., Chem. Commun. 1988, 67. Apeloig, Y.; Stanger, A. J. Organomet. Chem. 1988, 346, 305.
 (6) Reed, A. E.; Schleyer, P. v. R. J. Am. Chem. Soc. 1987, 109, 7362.
 (7) Shiner, C. S.; Grauer, C. M.; Haltiwanger, R. C. J. Am. Chem. Soc. 1985, 107, 7167.
 (8) Jeffrey, G. A.; Pople, J. A.; Binkley, J. S.; Vishveshwara, S. J. Am. Chem. Soc. 1978, 100, 373.
 (9) (a) Patrick, C. R. Adv. Fluorine Chem. 1961, 2, 1. (b) Smart, B. E. Molecular Structure and Energetics; Liebman, J. F., Greenberg, A., Eds.; VCH: Deerfield Beach, FL, 1986; Vol. 3, p 141. (c) Lehn, J. M.; Wipff, G.; Bürgi, H. B. Helv. Chim. Acta 1974, 57, 493.
 (10) For a few studies on the anomeric effect in orthoesters, see: (a) Banyard, S. H.; Dunitz, J. D. Acta Crystallogr. 1976, B32, 318. (b) Lapasset, J.; Viani, R.; Bouab, O.; Lamaty, G.; Moreau, C. Cryst. Struct. Commun. 1980, 9, 1181. (c) Wroblewski, A. E.; Appelquist, J.; Takaya, A.; Honzatko, R.; Kim, S.-S.; Jacobsen, R. A.; Reitsma, B. H.; Yeung, E. S.; Verkade, J. G. J. Am. Chem. Soc. 1988, 110, 4144. Also see: Reference 3a.
 (11) (a) Mulhoff, F. C.; Geise, H. J.; van Schaick, E. J. M. J. Mol. Struct. 1973, 20, 393. (b) Ypenburg, J. W.; Gerding, H. Recl. Traw. Chim. Pays-Bas 1972, 91 I, 1245 . (c) Lee, H.; Wilmhurst, J. K. Spectrochim. Acta 1967, 23A, 347.

[^2]: (12) Meyer, H.; Nagorsen, G. Angew. Chem., Intl. Ed. Engl. 1979, 18 551.
 (13) Pigenet, C.; Jeminet, G.; Lumbroso, H. C. R. Acad. Sci., Ser. C 1969, 269, 1587; Chem. Abstr. 1970, 72, 89648 z.
 (14) Burkert, U.; Allinger, N. L. Molecular Mechanics; ACS Monograph Series 177; American Chemical Society: Washington, DC, 1982.
 (15) Allinger, N. L.; J. Am. Chem. Soc. 1977, 99, 8127 . The original version of the MM2 program [MM2(80)], available from the Quantum Chemistry Program Exchange, Indiana University, Bloomington, IN 47401, was used. The revised parameters for treating the anomeric effect ${ }^{4 \mathrm{a}}$ were not included. As a result, the computed structrual features (especially $\mathrm{C}-\mathrm{O}$ bond lengths) may be in error, but the computed energetics are not likely to be affected. ${ }^{44}$ This claim has been confirmed by a reviewer for $\mathrm{C}(\mathrm{OMe})_{4}$ using the mm2(85) program. ${ }^{4 \mathrm{a}}$ We thank the reviewer for this valuable input. As further suggested by the reviewer, we plan to carry out a molecular dynamics simulation of the three-dimensional domino process.

[^3]: (21) (a) sheLx86: Sheldrick, G. M. Program for crystal structure solution, University of Gottingen, 1986. (b) SHelx76: Sheldrick, G. M. Program for crystal structure determination and refinement, University of Cambridge, 1976. (c) SFLS: Shiono, R. A block diagonal least squares program for the IBM 1130 computer, University of Pittsburgh, 1960. (d) mUltan80: A system of computer programs for the automatic solution of crystal structures from X-ray diffraction data, University of York, U.K., and University of Louvain, Belgium.
 (22) The orientations of the phenyl rings are mainly responsible for the loss of ideal $D_{2 d}$ and S_{4} symmetry in 4-6.
 (23) Kato, v. K. Acta Crystallogr. 1972, B28, 606.
 (24) Perdok, W. G.; Terpstra, P. Recl. Trav. Chim. Pays-Bas 1943, 62, 687: 1946, 65, 493.

[^4]: (28) Narasimhamurthy, N.; Samuelson, A. G. Tetrahedron Lett. 1986, 27,

